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LETTER TO THE EDITOR 

The structure of two-dimensional Witten-Sander aggregates 

Paul Meakin 
Central Research and Development Department, E I du Pont de Nemours and Company, 
Experimental Station, Wilmington, Delaware 19898, USA 

Received 12 March 1985, in final form 8 May 1985 

Abstract. A relatively large number (102-103) of reasonably large (about lo5 particles or 
sites) two-dimensional Witten-Sander aggregates have been simulated using new 
algorithms. This has enabled us to reduce statistical errors by an order of magnitude and 
has provided an opportunity to determine some new quantities describing in more detail 
the structure of Witten-Sander clusters. A quantitate description of the distortion of large 
lattice-based Witten-Sander clusters into a diamond-like shape is provided. The orienta- 
tional correlation in the bond directions for off-lattice Witten-Sander clusters has also 
been measured. This quantity has a power law dependence on distance with an exponent 
of about -0.37. 

In recent years a considerable interest has developed in a variety of non-equilibrium 
growth and aggregation models. The development of this area has as its genesis the 
discovery by Witten and Sander (1981) that a simple diffusion-limited aggregation 
model in which particles are added, one at a time, to a growing cluster or aggregate 
of particles via random walk trajectories, leads to structures with a fractal-like (Mandel- 
brot 1982) geometry. Despite the importance of this model in the development of this 
rapidly growing new area, there is still no rigorous quantitative theory for this simple 
growth process. In fact, there is relatively little known in quantitative terms about the 
structure of the aggregate formed by the Witten-Sander model. Most of our knowledge 
concerning the diff usion-limited aggregation process has resulted from computer simu- 
lations of a relatively small number (about 10) of rather small (approximately lo4 
lattice sites or particles) clusters (see, for example, Witten and Sander 1981, Meakin 
1983). Here new algorithms are described for diffusion-limited aggregation which have 
enabled us to generate relatively large numbers ( lo2-lo3) of somewhat larger (about 
lo5 lattice sites or particles) clusters. This has resulted in a reduction of statistical 
uncertainties by an order of magnitude and permitted investigation of the correction 
to the simple scaling picture (Witten and Sander 1981, Meakin 1983, Sander 1984) for 
diff usion-limited aggregation. 

One of the purposes of this paper is to describe the new algorithms which can be 
applied to a variety of other problems such as diffusion-limited cluster-cluster aggrega- 
tion and the penetration of diffusing particles into complex structures. We also describe 
results for some new quantities which have not been previously reported for diffusion- 
limited aggregation. 

An algorithm for the generation of Witten-Sander clusters has been described 
previously by Meakin (1983). Random walkers are released from a randomly chosen 
position on a circle which encloses the cluster. The particle then undergoes a random 
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walk until it either contacts the cluster and the cluster grows or it wanders a large 
distance from the cluster (typically a distance of 3R,,, from the centre of the cluster 
where R,,, is the maximum radius of the cluster). In the latter event the random walk 
trajectory is terminated and a new walker is started off at a random position on the 
‘launching’ circle which encloses the cluster. The procedure described above is repeated 
many times until a large cluster has been formed. 

In the improved algorithm we start off by placing a particle at the centre of a lattice. 
Each of the elements in the lattice is given a rather arbitrary value of L,,, (L,,, = 30) 
where L,,, is the maximum step length which the random walker may take if it is in 
the vicinity of the cluster. For all lattice sites from which a random walker could 
contact the ‘seed particle’ by taking a step of length L’ lattice units, the value of that 
lattice element is changed to L‘-  1 if L’- 1 is smaller than L,,,. Figure 1 depicts the 
early stages in a small scale off-lattice simulation carried out using this model. If the 
centre of the diffusing particle (random walker) lies on one of the lattice sites identified 
by a number ( L )  it can move by a distance of L particle diameters in any direction 
without contacting the cluster. The random walker is started off from a random position 
on the launching circle and travels by means of an off-lattice walk. The length of each 
step in the random walk is determined by the value of the lattice element in the lattice 
site which the random walker occupies. If the random walker is a distance R which 
is greater than R,,,+ L,,, lattice units from the centre of the cluster, it is allowed to 
jump by a distance which is a little smaller than R - R,,, lattice units. If the trajectories 
reaches a distance greater than lOOR,,, from the seed of the cluster, the trajectory is 
terminated and a new particle is started from a random position on the launching 
circle. After each new particle has been added to the cluster, the elements of the 
underlying lattice which are in its vicinity are updated so that the next particle cannot 
take a jump which would cause it to cross over any part of the cluster. 

Two versions of the model have been developed. In the off-lattice version of the 
model particles which are close to the cluster (in the unoccupied region in figure 1) 
jump to a new position which is randomly selected from all possible positions within 
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Figure 1. The early stages of a small scale off-lattice simulation. In this case L,,, was set 
to a value of 5. Random walkers whose centres are on a lattice site identified by a number 
L can move by L particle diameters without contacting the cluster. 
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one lattice unit (the average step length is l / h  lattice units). The particles, which 
are considered to have a diameter of 1 lattice unit, are stopped and added to the cluster 
at that point in their trajectory where they first contact another particle which has 
already been incorporated into the cluster. In this model the underlying lattice is also 
used to indicate to the random walker which particles are in its vicinity and must be 
examined for possible contact. After a particle has been added to the cluster, the 
lattice site which is occupied by its centre is assigned a number which indicates that 
it is occupied by this particle. In figure 1 the bold line encloses all of the occupied 
lattice sites at the stage of growth in this figure. The value assigned to the lattice 
element also indicates if it is occupied by more than one particle and if so provides a 
means of identifying all of the particles associated with that lattice site. 

In the semi-lattice version of the model, the mobile particles undergo off-lattice 
random walks as before, but the aggregate is represented by filled lattice sites. In the 
vicinity of the growing aggregate, the particle which is considered to be of zero size 
jumps by a distance of 1 lattice unit. If the end of a step in the trajectory causes the 
particle to land on an unoccupied site adjacent to (nearest neighbour to) an occupied 
site the trajectory ends and the cluster grows by one lattice site into the unoccupied 
site. If the random walker jumps onto an occupied site in the cluster, the last step in 
the walk is reversed. 

These simple algorithms can be used to generate an off-lattice aggregate containing 
50 000 particles in about 7 min of CPU time on an IBM 3081 computer. A 100 000 site 
semi-lattice simulation requires about 11 min of CPU time. These algorithms are 
100-1000 times faster than those described previously by Meakin (1983) and they 
should be capable of further improvements. 

In terms of speed these algorithms seem to be comparable with the more complex 
methods developed very recently by Brady and Ball (unpublished). However, our 
methods do not make efficient use of storage capabilities and it would be difficult to 
generate clusters containing much more than 100 000 particles. 

Figure 2( a )  shows a 50 000-particle two-dimensional Witten-Sander cluster gener- 
ated using the off-lattice model and figure 2 ( b )  shows a 100 000-site cluster obtained 
from the semi-lattice model. Figure 2 ( b )  shows quite clearly the anisotropy of the 
overall shape of the cluster. The formation of a diamond-like figure has been noticed 
previously for fully lattice model (on-lattice growth with on-lattice walks) simulations 
of diffusion-limited aggregation by Brady and Ball (unpublished) and Meakin (unpub- 
lished). This figure and many others like it demonstrate that the use of on-lattice walks 
is not responsible for the diamond shape. The formation of a diamond shape may be 
due simply to the fact that addition of a particle along the direction of one of the axes 
causes the structure to grow by 1 lattice unit in that direction whereas addition of .a 
particle along one of the diagonals causes the aggregate to grow only by l / f i  lattice 
units in the diagonal direction. 

In order to provide a quantitative measure of the diamond-like shape of two- 
dimensional semi-lattice Witten-Sander aggregates, the maximum projection of the 
coordinates of each particle onto the lattice axes and the diagonal axes (lattice axes 
rotated by 45") have been determined for all of the occupied sites in the clusters. The 
parameter R defined by 

Z projections onto lattice axes 
Z projections onto diagonal axes 

R =  

provide a simple quantitative description of the shape of the clusters. For a completely 
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800 diameters * -1250 lattice units * 
Figure 2. ( a )  A typical 50 000-particle off -lattice two-dimensional Witten-Sander aggregate. 
( 6 )  A typical 100 000-site semi-lattice two-dimensional Witten-Sander aggregate. The 
preferential growth along the axes of the lattice (characteristic of this model) can easily 
be seen in this figure. 

isotropic structlre, R has a value of 1.0 and for a uniform diamond shape R has a 
value of 1.5142 or 1.061. Figure 3 shows the dependence of R on cluster size for 
semi-lattice Witten-Sander aggregates. The results shown in figure 3 were obtained 
from 234 clusters and the statistical uncertainties (95% confidence limits) are less than 
*0.01 for the larger cluster sizes. It is clear from figure 3 that R has not reached its 
limiting (large N )  value even for clusters of 100 000 sites and'that R has a value larger 
than that of a uniform diamond shape. 

1.10 1 I I I I 1 I I I 

I . O 2 ~  1.00 0 20 40 60 80 loo x103 

N 

Figure 3. This figure shows how the parameter R (the ratio of the sum of the maximum 
projections of the site coordinates along the natural lattice axes divided by the sum of the 
projections along the diagonal (45") axes) depends on cluster size ( N )  for two-dimensional 
semi-lattice aggregates. This curve consists of 500 linear segments joining adjacent data 
points. 
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In the off -lattice model for diff usion-limited aggregation, a bond vector (6) can be 
associated with each of the particles in the aggregate. The vector bi is a unit vector 
in the direction of the bond which is formed when the ith particle is added to the 
cluster. The bond is considered to join the centre of the contacted particle in the 
cluster to the centre of the new particle. The ordinary two-point density-density 
correlation function for an N particle aggregate is given by 

where p ( r )  is 1 if there is a particle at position r and 0 otherwise. The bond vectors 
can be used to define similar correlation functions which depend on the relative 
directions of the bonds associated with pairs of particles separated by a distance S. 
For example 

Here b ( r )  is the bond vector associated with the particle at position r if there is a 
particle at this position and 0 otherwise. 

Figure 4 shows the correlation functions C ( r ) ,  C ’ ( r )  and C ” ( r )  obtained from 34 
50 000-site off-lattice Witten-Sander aggregates. As expected, C( r )  exhibits the same 
scaling behaviour with distance ( r )  as the ordinary two-point density-density correla- 
tion function (C‘(  r )  - r-‘cx = d - Dm). However, C”( r )  shows a quite different 
behaviour, C”( r )  - r-”,  where the exponent 7 has a value of about 0.66. Part of the 
power law decay for C ” ( r )  can be attributed to the power law decay of the density- 
density correlations. However, the additional contribution of the decay of angular 
correlation can be described by an exponent r$ having a value of about -0.37. This 
means that angular correlations in diff usion-limited aggregation are long range. 

Relatively efficient off -lattice and semi-lattice algorithms for diffusion-limited aggre- 
gation have allowed us to reduce statistical uncertainties by an order of magnitude. 

I n l r )  

Figure 4. Comparison of the ordinary two-point qensity-density correlation function (C( r ) )  
with the orientational correlation functions (C’ (  r )  and C”( r ) )  defined in the text. 
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By measuring the maximum projections of particle coordinates along the natural lattice 
axes and the diagonals, a simple quantitative measure (as expressed by the parameter 
R above) of the tendency of lattice-based aggregates to grow preferentially along the 
directions of the lattice axes has been obtained. Our results indicate that this tendency 
for preferential growth along the lattice directions is larger than that found in a simple 
diamond shape. The growth of the parameter R to the value characteristic of a diamond 
shape can be understood on the basis of simple geometric arguments. The additional 
preferential growth along the axes must be due to screening of the edges of the diamond 
shape by the more exposed corners. 

Perhaps the most interesting result of this work is the measurement of the bond 
orientation correlation function in off -lattice aggregates. Our results indicate that 
orientational correlations decay only slowly with increasing distance (with a power 
law whose exponent is about -0.37. This suggests a high degree of ‘directionality’ in 
diffusion-limited aggregation and may be related to the observation that the minimum 
path-distance between two points on the aggregate scales linearly with their separation 
in the embedding space or lattice (Meakin e? a1 1984). 
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